AmiVoice Techblog

AmiVoiceの音声認識に関する技術情報・活用方法・組み込み方などを発信するアドバンスト・メディアのテックブログです

なぜAmiVoiceは高精度なのか?音声認識エンジンの種類が豊富な理由

音声認識は難しい技術なので、なかなか認識率100%にはできません。今回の記事では、なぜ音声認識は難しいのか、そしてAmiVoiceではどうやってその難しさに立ち向かっているのかを解説します。

音声認識の「エラー改善率」と「認識精度(認識率)」の違いとは?

音声認識の認識精度(認識率)は、認識精度が上がるほど、さらに1ポイント上げるのは難しくなります。その理由を「エラー改善率」という指標を用いて説明します。また、音声認識の論文等でよく使われるWERという指標についても触れています。

AmiVoiceの領域特化型エンジンの音声認識精度を比べてみた(電子カルテ用エンジン)

何を喋っても正しく認識できる万能な音声認識エンジンを作るのは難しいので、AmiVoiceでは数種類の音声認識エンジンを開発者向けに提供しています。今回はその中から汎用エンジンと電子カルテ用エンジンを使って認識率を比較してみました。

Linuxで音声認識を動かしてみた3(ACP+pulseaudio編)

「Linuxで音声認識を動かしてみた」という題材でお話していきます。今回の目標はACPのC++とPulseAudioライブラリを使ってマイク認識するまでです。

Linuxで音声認識を動かしてみた2(簡易マイク入力編)

「Linuxで音声認識を動かしてみた」という題材でお話していきます。今回の目標はACPのC++とarecordコマンドを使ってマイク認識するまでです。

Linuxで音声認識を動かしてみた1(ビルド編)

「Linuxで音声認識を動かしてみた」という題材でお話していきます。今回の目標はACPのC++のサンプルをビルドして動かすまでです。

音声認識精度よりも大切なこと(タスク達成率)

音声認識の性能を見る指標として、音声認識精度(音声認識率)がとてもよく使われますが、それだけでは見逃してしまう重要な性能もあります。今回はAmiVoiceの社内でも使われることの多い「タスク達成率」について説明します。